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Abstract

An investigation of the history of verification and validation (V&V) in modeling and simulation
(M&S) indicates that validity has been interpreted in different ways based on the context and the
types of problems being solved.  That is, advances in modeling paradigms, methodologies, tools,
and technologies had considerable impact on the way validation is perceived. The shift from an
accuracy point of view to a quality-centric approach in model V&V is a recent indicator of this
trend. The modeling artifacts produced by a certain paradigm usually depict specific
characteristics unique to that paradigm such that widely adopted conventional methods do not
properly scale or apply. This paper introduces a generic simulation lifecycle and discusses the
V&V processes in the context of the life cycle of a simulation study. Key standards, practices,
and processes for V&V of software-intensive models are reviewed. Special emphasis is given to
major V&V issues as well as emergent challenges due to a variety of modern simulation
implementation paradigms and development methodologies. The issues include recognizing and
avoiding some of the myths of simulation model V&V to focus on essential challenges as
opposed to accidentally perceived problems. Building on the identified issues and challenges
with regard to the emerging prominent trends in model development, a set of potential research
directions are identified and discussed.

1. Introduction

Simulation modeling is a process that entails the development of a model of a system to conduct
experiments for the purpose of understanding the behavior of the system and evaluating its
alternative operation strategies. As the complexity of models increase, technologies evolve, and
development paradigms change, the application of traditional analytical methods are less likely
to scale to facilitate reasoning about emergent behaviors of large-scale complex systems. Hence,
simulation modeling is becoming one of the most powerful problem solving methods for
scientists and engineers to reason about the processes of complex systems that they develop and
examine. However, unless developed models are demonstrated to be valid and certified to be
credible, the predictions and explanations resulting from simulation experiments will carry the
high risk of leading to the dissemination of inaccurate knowledge and decisions. Model
validation and verification play key roles in mitigating such risks.
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Model validation is defined as demonstrating that a computerized model satisfies the simulation
objectives and requirements with sufficient accuracy within its domain of applicability.  A model
is considered to be valid under a set of experimental conditions if the model’s response accuracy
is within acceptable range for its intended purpose [Sargent 1996].  The model validation
perspectives in operations research heavily influenced this traditional view of simulation model
validity.  A close look at the model validation history indicates that validity has been interpreted
in different ways based on the context and the types of problems being solved.  That is, advances
in modeling paradigms, methodologies, tools, and technologies had considerable impact on the
way validation is perceived. These advances are partly influenced by the changing nature of the
problems attacked by the modeling community. This paper, for instance, examines the validation
and verification technologies for software-intensive simulation models under different
development and implementation paradigms.

1.1 Definitions

Deutsch [1982] and Boehm [1984] describe software validation as a set of activities designed to
guarantee that the right product is being built (from a user’s perspective) and verification as
activities that guarantee the product is being built correctly - according to requirements
specifications, design documentation, and process standards.

Lewis [1992] discusses the value and need for Independent Verification and Validation (IV&V).
He establishes six rules that must be observed if the process is to be effective [p. 13]:

q IV&V must be an independent third-party activity.

q IV&V must be an overlay, not an integral part of the development cycle; it is an added-
value concept.

q IV&V must report to and owes its fundamental allegiance to the customer, not the
developing contractor or organization.

q Although it may share some of the tools and data used by the development
organization, IV&V must also provide its own tools and disciplines

q Although flexible in terms of its starting point, IV&V must verify each phase relative to
itself and to its adjacent phases.

q IV&V must provide a means of validating all testable software performance
requirements.

Lewis [1992] and others [Arthur and Nance 2000; Schulmeyer and MacKenzie 2000; Rakitin 2001]
review the cost versus benefits issue associated with IV&V. In addition to establishing a
completely independent V&V organization, other organizational alternatives include assigning
V&V responsibilities to another group (e.g. Software Quality Assurance) which is separate from
the development project team but is still a part of the development contractor’s overall
organization.
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Another issue involves the transferability of various V&V methods and standards to modern, and
often less formal, software development paradigms. (A brief list of existing V&V standards and
publications is given in Table 1). Finally there is the issue of interpreting and applying V&V in
the context of the modeling and simulation application domain. These issues will be discussed in
subsequent sections of this paper.

1.2 Verification and Validation for Modeling and Simulation

To better understand the emergent validation approaches and their rationale, it is useful to be
aware of the historical evolution of model validation philosophies. For the purpose of our paper,
we use the classification advocated in Landry et al. [1983] and Derry et al. [1993]. In this
classification the traditional reductionist/logical positivist school would see a valid model as an
objective representation of the system under study. That is, the model is either correct or
incorrect for the domain of application. On the other hand, pragmatist and holistic schools that
promote systems thinking viewpoint would consider a model valid on the basis of qualitative and
subjective evaluations of its contextual usefulness. In this school of thought, a model is not
considered to be absolutely correct or incorrect, but rather measurement of qualitative
characteristics are considered essential for acceptability and usability. Since simulation model
validity means “adequacy with respect to a purpose”, validation needs to have qualitative and
subjective evaluation components. The detailed discussion of the above philosophical influences
is beyond the scope of this paper; therefore, we refer the reader to Naylor and Finger [1968] and
Derry et al. [1993], which provide a detailed overview of major schools of thought in philosophy
of science that affected validation during the early years of simulation modeling.

As the complexity and nature of today’s simulation application domains, tools, and technologies
evolve from small-scale software programs to complex, distributed, concurrent federations of
software-intensive models that are integrated with virtual and real-time systems, the simulation
development process is increasingly being dominated by software-intensive system development
activities. The essential difficulties of software such as irreducible complexity, conformity, and
maintainability [Brooks 1995] impacts the acceptability, usability, as well as credibility of
models. As a result, the original accuracy-centered validity viewpoint of confidence building
needs to be enriched by quality-centric viewpoint by using relevant software verification,
validation, and quality assurance activities.

To this end, the simulation modeling community incorporates the notion of model specification,
design, and implementation verification stages to the traditional validation process framework of
operations researchers. Sargent [1996] defines model verification as the process of ensuring that
the programmed model (i.e., software implementation) is a correct realization of the conceptual
model of a simulation. A more extensive view of model verification is defined as the activity of
demonstrating that the artifacts produced at the end of a simulation development life cycle stage
conforms to the requirements set forth at the beginning of this phase. In this framework, model
verification deals with the transformational accuracy in model development and works by
demonstrating that model development artifacts are transformed from one form to another with
sufficient accuracy throughout the development life cycle [Balci 1994]. In other words, as
suggested in [Boehm 1984], while validation deals with the issue of “building the right model”,
verification is concerned with “building the model right”.
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Table 1.  Sample V&V Standards List

AFSC/AFLCP 800-5 - Software Independent Verification and Validation.

Air Force Instruction 16-1001, Verification, Validation And Accreditation (VV&A), 1 June 1996.

ANS 10.4 - Guidelines for the Verification and Validation of Scientific and Engineering Computer Programs for the
Nuclear Industry, 1987.

DI-M-2051A Technical Manual Quality Assurance Data, Navy, 8 Sept. 1976.

DI-MCCR-80770, Software Independent Verification and Validation Plan, 21 Feb. 1989.

FHWA Handbook, Wentworth, James A., Knaus, Rodger, and Aougab, Hamid, Verification, Validation, and Evaluation
of Expert Systems: An FHWA Handbook, Version 1.2 - 1st Edition (McLean: Federal Highway Administration, Jan. 1997).

FIPSPUB 101 - Guideline for Life cycle Validation, Verification, and Testing of Computer Software.

FIPSPUB 132 - Guideline for Software Verification and Validation Plans, 19 Nov. 1987.

IEEE 1012 Standard for Software Verification and Validation Plans, 1988.

IEEE Standard 1074, Software Quality Management Process and Verification and Validation Process, 30 Oct. 1992.

IEEE/EIA 12207.0-1996 - Software Life Cycle Processes, March 1998.

IEEE/EIA P12207.1 (Draft) Guide for information technology: - Software life cycle processes, - Life cycle data, 11
February 1997.

IEEE/EIA 12207.2-1997 Software life cycle processes - Implementation considerations, April 1998.

ISO 9001, Quality Systems - Model for Quality Assurance in Design, Development, Production, Installation, and
Servicing, (Geneva, International Organization for Standardization, 1994).

ISO 9000-3, Quality management and quality assurance standards - Part 3: Guidelines for the application of ISO 9001 to
the development, supply and maintenance of software, (Geneva, International Organization for Standardization, 1991).

JPL D 576 - Independent Verification and Validation of Computer Software Methodology, 1983.

MIL-M-81203, Validation / Verification Plan.

MIL-STD-499B, Systems Engineering Management Plan (SEMP).

NASA-GB-002-95, Formal Methods Specification and Verification Guidebook for Software and Computer Systems,
Volume I:  Planning and Technology Insertion, Release 1.0, kemp@ivv.nasa.gov.NBS.

NBS Special Publication 500-93, Software Validation, Verification, and Testing Technique and Tool Reference Guide,
National Bureau of Standards, Computer Science and Technology, Washington, DC, Sept., 1982.

NIST Special Publication 500-234, Wallace, Dolores R., Ippolito, Laura M. and Cuthill, Barbara, Reference Information
for the Software Verification and Validation Process, National Institute of Standards and Technology, Computer Systems
Laboratory, Gaithersburg, MD  20899, 29 March 1996.

UDI-M-23928  Validation and Verification Plan, Navy-SH, 2 Jan. 1973.

[Schulmeyer and MacKenzie (2000), p. 47]

mailto:kemp@ivv.nasa.gov
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Taking this point of view,  [Balci 1994], adapts a taxonomy of software verification, validation,
and testing techniques to the simulation modeling domain. Similarly, Defense Modeling and
Simulation Office (DMSO) has recently established a comprehensive VV&A Recommended
Practices Guide along with a policy definition, DOD Instruction 5000.61, to assign
responsibilities and prescribe procedures for the VV&A of DOD M&S. The recommended
techniques emphasize computerized model V&V methods applicable throughout the
development cycle of simulation studies.

1.3 Authors’ Background

Garth MacKenzie is an Associate Professor and Program Director in the Graduate School at
University of Maryland University College. He has over 30 years of industry experience as a
programmer, systems engineer, manager, and consultant. He has taught graduate level courses in
software project management, software verification and validation, CASE tools, data
communications, and database systems. He holds BA in Physics, BS in Mathematics, and Master
of Administrative Science degrees from the Johns Hopkins University. He is a member of the
ACM and a Senior Member of the IEEE.

G. Gordon Schulmeyer is President and co-founder of PYXIS Systems International,
Incorporated - a consulting firm that specializes in software project management practices and
software process improvement. In addition to his more than 40 years of software development
and management experience, he has authored and edited many publications in the field,
including the Handbook of Software Quality Assurance, Zero Defect Software, and Verification
and Validation of Modern Software-Intensive Systems (with G. MacKenzie as co-author). He
holds BS in Mathematics and MBA degrees from Loyola College of Baltimore and a JD degree
from the University of Baltimore.

Levent Yilmaz is a senior research engineer in the Simulation and Software Division of Trident
Systems Incorporated, in Fairfax, Virginia. He is also an Adjunct Assistant Professor in the
Graduate School at University of Maryland University College. He has served as a principle
investigator and lead project engineer for a variety of model-based verification technology
development efforts. His current research focuses on bringing and applying compositional
verification technology and formal models of behavioral consistency analysis and testing to
parameterized Synthetic Natural Environment development for Distributed Mission Training. He
received a BS degree in Computer Engineering from Bilkent University and holds MS and PhD
degrees in Computer Science from Virginia Polytechnic Institute and State University.

1.4 Outline of the Paper

This paper is structured as follows: Section 2 introduces the model development life cycle along
with its credibility assessment stages. The key V&V processes are also discussed throughout the
presented development life cycle. Section 3 focuses on the major V&V issues and challenges
involved with the modern model development and implementation paradigms. In section 3, a set
of model validation myths are presented to distinguish essential issues from accidental
challenges. Section 4 presents a set of potential future research directions in light of the problems
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presented under section 3 as well as emerging trends. Sections 5 and 6 provide recommendations
and conclusions, respectively.

2. Verification, Validation, and Testing Throughout the Simulation Model
Development Life Cycle

Verification and validation is not a separate phase that is independent of the model building
process. Model building and V&V are interlinked, and V&V is a continuous activity throughout
the entire simulation model development life cycle. A variety of life cycles are presented in the
simulation modeling literature [Nance 1987; Sargent 1996]. For the purpose of this paper, we
present a simplified process model similar to the problem solving process depicted in Sargent
[1996] and Landry et al. [1993]. The goal is to present the main life cycle phases and indicate
how the verification and validation process is integrated with the model building life cycle.

2.1 Simulation Model Development Life Cycle

The life cycle of simulation model development is depicted in Figure 1.  The stages of the life
cycle are shown as solid rectangles. The model development as well as validation processes that
relate the phases of the life cycle are shown as arrows. The solid arrows denote the model
development processes, while the dashed arrows indicate the validation processes.

The problem domain analysis starts with the system entity or problem situation. System analysts
create abstractions on the system structure and behavior to derive system theories and properties
of interest. If system data exists due to experimentation with the system, the analysts generalize
and hypothesize from the results to facilitate the derivation of the formulated problem definition.
Several characteristics of interest are identified in [Shannon 1975] to guide and structure the
problem formulation process: (1) change, (2) environment, (3) counterintuitive behavior, (4) drift
to low performance, (5) interdependency, (6) organization. Balci [1994] briefly summarizes
these characteristics.  The solution domain entails the formulation of the simulation requirements
and objectives, model formulation through analysis and conceptualization, model specification
and implementation, experimentation, and revision. Each of these phases is briefly discussed
below.

2.1.1 Requirements and Simulation Objectives Formulation

Requirements formulation process takes formulated problem definition as input to generate
simulation objectives and requirements definition. The goal is to bridge the gap between system
level objectives definition and simulation model domain. The process is usually divided into
three areas of effort: (1) problem recognition, (2) evaluation and synthesis, (3) simulation context
(domain) modeling.  It is important to understand modeling in a system context. This requires
reviewing the model scope in such a way that credible problem recognition is ensured. The
objective is recognition of the basic problem entities as perceived by the customer/sponsor.
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Figure 1: The Life Cycle of Simulation Study
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During the evaluation and synthesis the analyst must define all externally observable entities,
evaluate the content and flow of information as well as processes to establish the simulation
context. The analyst creates models of the perceived simulation context to derive constraints,
assumptions, and objectives that will be provided as input to the simulation concept development
phase.

2.1.2 Simulation Model Conceptualization

The goal of simulation model conceptualization is to derive a simulation conceptual model.
Simulation conceptual model is defined by Pace [1999] as the simulation developer’s way of
translating model objectives into a detailed analysis and design framework. The framework
defined by [Pace 1999] characterizes the simulation concept and provides a basis from which the
software, hardware, networks, and systems that will make up the simulation can be built. The
simulation concept includes the representation of the mission space as well as the simulation
space. All solution domain elements and specification of how they are expected to interact
constitute the mission space.

The simulation space part of the simulation concept includes all additional functional and
operational capabilities and elements to explain how the simulation will meet its objectives. The
steps of the conceptual model development can be characterized as follows: (1) collecting
authoritative information, constraints, assumptions regarding the simulation context from the
simulation objectives and requirements; (2) characterizing the simulation mission space entities
and processes; (3) determining and representing simulation elements constituting the simulation
concept space that realizes the entities and processes of the mission space; and (4) specifying the
interactions and relationships among the simulation elements.

A variety of paradigms and conceptual frameworks exist to support conceptual model
development. The simulation implementation worldviews such as event scheduling, activity
scanning, or process interaction as well as the domain modeling decisions are made during the
model conceptualization. The accuracy and precision of the conceptual model representation
depends on how the entities are abstracted. The Unified Modeling Language (UML) and Object
Modeling Technique (OMT) provide a variety of concept development diagrams (i.e., use case,
sequence, deployment, component, collaboration, class, state diagrams) to delineate different
perspectives of a model.

2.1.3 Simulation Model Specification and Design

Model specification and design process entails the translation of the conceptual model into a
detailed simulation software design model. The simulation software design can be represented by
using a variety of paradigms and model representation methodologies such as structured
methods, object-oriented modeling languages (i.e., UML, OMT), flowcharts, activity diagrams,
condition specification [Overstreet and Nance 1985]. It is essential to choose an appropriate
modeling paradigm for the application domain and the simulation conceptual model identified
during the earlier phases of the life cycle. There exist additional concerns such as quality that
influence the model specification and design methodology selection. Quality attributes such as
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maintainability, adaptability, portability, reusability requires certain model specification
methods. The need for highly critical simulations in decision making may necessitate the use of
formal methods to assure that model design satisfies certain formal properties required by the
simulation context. Design representation and specification formalisms that facilitate logical
inference with sound proof rules may be necessary to establish the correctness of the model with
respect to these formally specified properties. Hence, the application domain and the utilized
paradigm for model development influence the selection of both the modeling and validation
methods employed during the life cycle of a simulation study.

2.1.4 Simulation Model Implementation

Simulation model implementation is a programming or construction (i.e., model composition)
process in which the model specification (design) is translated into an executable simulation. The
programmed model in the life cycle denotes the executable simulation developed either with
existing simulation packages (i.e., SIMSCRIPT, GPSS, MODSIM III, SIMULA, JDEVS,
SIGMA) or high-level programming languages. Programming simulations with high-level
programming languages requires understanding of conceptual frameworks (i.e., worldviews) of
simulations. Event scheduling, activity scanning, and process interaction are the major
worldviews with which model implementors need to be familiar. The choice of programming
paradigm (i.e., object-oriented, procedural, object-based) has implications on the V&V process
as well. The constructs of a programming language paradigm (i.e., inheritance in object-oriented
development) might require proper test selection and model complexity measurement indicators
to accurately assess quality of a model.

2.1.5 Experimentation and Revision

Simulation is performed to conduct experiments for the purpose of understanding the behavior of
systems and evaluating their alternative operation strategies. This requires collecting the desired
information from model execution and interpreting the results for decision making. Model
developers need to be aware of experiment design methods to make valid inferences and collect
information with minimal cost. There exist a variety of experiment design methods such as 2k

and factorial (full or fractional) that can be employed to predict the effect of various input
variables on response variables. Detailed discussions on various simulation experiment design
and analysis methods can be found in Jain [1991].

Revision or model redefinition refers to the process of modifying the model to enhance, correct,
or adapt to changing contextual requirements. It is a well-known fact that almost two-thirds of
model development time is devoted to maintenance evolution. In particular, the current trend
towards using open standards supported by COTS in developing open distributed models
increases the likelihood of constant model modernization and evolution. The usage of COTS
components and the need for modernization introduce vendor driven upgrade problem. That is,
as new or upgraded technologies are inserted into the model baselines, the model developers
spend enormous amount of time to instill back confidence in the models connected to legacy
virtual and real-time systems to assure backward compatibility.



Foundations ‘02 A1 - 11 October 2002

2.2 Verification and Validation Throughout the Development Life Cycle

Verification and validation is a continuous activity throughout the development life cycle. The
V&V processes are interleaved with the development processes as shown in figure 1. The V&V
stages are simulation objectives and requirements validation, conceptual model V&V, design
verification, implementation (programmed model) verification, experiment V&V, and
operational validation. Each of these credibility assessment stages is briefly defined below. The
detailed discussion on V&V technologies and methods applicable for each credibility assessment
stage is given in section 2.3.

2.2.1 Simulation Objectives and Requirements Validation

Simulation requirements are derived from formulated problem definitions to characterize the
simulation context and formalize the high-level operational as well as functional capabilities  that
are expected from the simulation. The validation of the requirements needs to assure that the
authoritative information, doctrine, and strategies of the system’s context are accounted for in the
simulation context depicted by the simulation requirements. Specifically, system’s environment
and boundaries along with the characteristics of its inputs need to be taken into consideration.
The influences of the inputs, the causal interdependencies, processes, and organizational
characterizations need to be precisely and accurately reflected in the simulation context (i.e.,
requirements). Use cases, scenarios, and functional models related to the system help establish
the correspondence of the devised simulation context to the formulated problem and system
definition. It is also essential to check the internal consistency, completeness, coherence, and
correctness of the simulation requirements.  The next section overviews these evaluation criteria
in detail.

2.2.2 Simulation Conceptual Model Verification and Validation

Simulation conceptual model validation is defined as determining that the theories and
assumptions underlying the conceptual model are correct and the representation of the validated
requirements is reasonable at the correct level of fidelity for the intended purpose of the model.
In particular, the conceptual model’s structure, logic, mathematical and causal relations, and the
processes need to be reasonably valid and accurate representation of the real system (i.e., as
defined in the simulation context). The constraints and assumptions of the system theories and
context needs to be incorporated into the conceptual model. Examples of theories and
assumption are stochastic processes and their constraints such as linearity, independence,
stationary, and probabilistic distributions of arrivals. The conceptual models are also required to
be internally complete, consistent, coherent, and correct. The simulation space indicated by the
conceptual model incorporates all system entities of the simulation context in the mission space
[Pace 1999]. The simulation space of the conceptual model, as defined in [Pace 1999], needs to
incorporate additional essential control and operating characteristics of the simulation to satisfy
the simulation requirements. Furthermore, the conceptual model should not include conflicting
elements, entities, and processes. That is, entities need to be represented from a compatible
perspective to facilitate consistency and interoperability with regard to potential simulation
features such as attribute/component fidelity, coordinate systems, event timing. Redundant
elements need to be avoided to establish a coherent concept of the simulation in which all
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components have certain functions and that all model components are reachable. There exists a
variety of conceptual model evaluation quality criteria such as completeness, consistency,
modularity, implementation independence, maintainability, and generality [Lindland et al. 1994].

2.2.3 Simulation Model Design Verification

Model design verification is concerned with demonstrating the sufficient accuracy of the
conceptual model transformation process that translates simulation conceptual model to a
detailed design model. The way verification is perceived and deployed depends on the modeling
design methodology and paradigm utilized for representation. In addition to the widely applied
subjective criteria such as “level of agreement” with the “intended domain of applicability”,
formal analysis, evaluation, and verification methods are necessary to measure and predict
certain design quality metrics from the model. Design metrics as well as formal and semi-formal
methods such as model checking can help model designers prove the satisfiability of certain
functional as well as non-functional properties defined in the conceptual model. The notions of
completeness, consistency, coherence, and correctness apply to model design verification as
well.

2.2.4 Simulation Model Implementation Verification

Simulation model implementation verification is concerned with demonstrating that
implementation (construction) of the design is an accurate realization of the design. That is, the
entities, processes, and associated constraints and assumptions are implemented correctly. Model
analysis and testing is performed to determine the degree of accuracy of the transformation from
the design to the realization. Model analysis deals with the static analysis of the software or
model realization to predict certain control and data-flow properties of interest. Model testing, on
the other hand, is performed to demonstrate the existence of errors in the model by subjecting the
model to test cases. The model is executed as a trace-driven simulation or using developed test
cases to measure response variables and the involved processes. The observations are compared
to the actual system data or test case oracles to determine any deviation from the expected
behavior.

2.2.5 Simulation Model Experiment Design Verification and Validation

Simulation experiment design V&V entails substantiating the correctness and accuracy of the
experimental designs. As mentioned above, there exist a variety of experiment design
methodologies. Full and fractional factorial designs [Jain 1991],  response-surface methodologies
[Law and Kelton 1991], and ranking and selection [Law and Kelton 1991]  are widely utilized to
formulate efficient and systematic experiment designs to make valid inferences. Methods for
variance reduction can be used to increase the statistical accuracy for a given amount of
simulation.  Other issues such as theoretical accuracy of  random number generators, accurate
implementation of random variate generators, and sufficient testing of random number
generators permeate the experiment design V&V. Furthermore, it is essential to utilize
appropriate statistical techniques to determine statistical significance of deviations. Consistency
in replicating the identical experimental conditions in testing alternative operating strategies is
essential for valid and accurate inference making from the measured results. Law and Kelton
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[1991] suggest the proper handling of the initial transient start up time in simulation studies. This
problem needs to be resolved and handled in simulation output collection and consideration.

2.2.6 Simulation Model Operational Validation

Operational validity deals with determining that the model’s output has sufficient accuracy with
respect to system data, theories, and definition for the intended purpose of the simulation study
over its intended domain of applicability. Sargent [1996; 1999] defines a variety of means to
determine the operational validity. Graphical comparisons of data, comparisons of means,
variances, maximums, and distributions, relationships between different output variables,
statistical significance and hypothesis testing, and confidence intervals are used to predict the
degree of relevance or deviation of simulation data from the system data, theories, and
quantitative expectations. While this perspective emphasizes statistical comparison, non-
functional qualities such as causality, trends, and patterns are also essential in operational
validity.

2.3 Verification and Validation Techniques, Tools, and Technologies

Figure 2 presents a taxonomy of widely known V&V techniques. The details with regard to
taxonomy and techniques are discussed in Balci [1994] and Yilmaz and Balci [1997]. The
techniques are classified into four main perspectives. The classification is based on the level of
formality required by the techniques.

That is, the techniques lie in a spectrum of informal to formal. Informal techniques rely on
subjective human decision-making using rigorous and well-defined methodologies. Static
techniques are based on the model design and implementation artifacts, and they do not require
execution of the model. On the other hand, dynamic analysis requires model execution and
experimentation to assess credibility. Formal methods, which are at the other end of the
spectrum, rely on formal process of symbol manipulation and inference according to well-
defined proof rules of the utilized specification language.

2.3.1 Verification, Validation and Testing of Object-Oriented Models

Although formal verification and testing are essential elements in the success of component-
based development, advances in these areas have not been widely applied or adapted for unique
problems of reusable component verification. The Reusable Software Research Group at Ohio
State University is one of the few research groups which has done extensive work in the field of
local certification and modular reasoning about the behavior of component software. Their web
site can be accessed at http://www.cis.ohio-state.edu/rsrg. In the next two subsections the
advances in two areas related to object-oriented component-based systems verification and
testing are examined: formal verification for abstract data types and object-oriented software
testing. Recently, the software testing community has tackled new sources of problems
introduced by the OO paradigm. [Binder, 1994; Binder, 1995; Binder 2000; Cheatham &
Mellinger, 1990; Smith & Robson, 1990]. Hegazy [1989] has investigated interesting testing
issues related to reusable components such as controllability, observability, and genericity.  The
V&V issues in object-oriented simulation has been first discussed in Yilmaz and Balci [1997].

http://www.cis.ohio-state.edu/rsrg
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Yilmaz [1998; 2000] extended on this work to investigate the V&V issues with regard to
component-based simulations as well as their certain characteristics such as object-flows [Yilmaz
2001] under process interaction semantics.

Figure 2: Taxonomy of Conventional V&V Techniques
(Modified from  [Yilmaz and Balci 1997])

2.3.1.1 Formal Methods for Abstract Data Types and Conceptual Models

Since component software involves a higher risk of poor verification than does conventional
software, it is essential that a reusable, concrete component is proven completely dependable and
accurate with respect to its published properties. Since testing itself is not capable of proving the
absence of errors, it is necessary to support it with formal verification. Furthermore, as Weide
and Hollingsworth [1992] state, local certification of components is a prerequisite for tractable
reasoning and verification of large software systems built using these components. Formal
reasoning is based on comparing two formal objects, i.e., demonstrating the correctness of a
program with respect to a specification, proving properties about a given system description.

There are two general approaches for showing the correspondence of two formal objects:
theorem proving and model checking. Model checking, which works on finite transition systems,
has proven to be a successful technology for verifying hardware [Clarke, Grumberg, and Long
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1994; Wing and Farahani 1995]. It exploits the finiteness property of the hardware by
performing an exhaustive analysis of the transition system’s states. The model checking
approach is also based on the assumption of finiteness of the state space of the software.
Applying model checking to software may seem inappropriate at first glance due to the possibly
infinite state space of software. However, based on abstractions of the state space of software, a
model of the system rather than the system itself can be used, thus raising the level of abstraction
at which the reasoning is performed. Therefore, while one can still fall short of exact reasoning
about the original system, it is possible to perform approximate reasoning more quickly and with
less effort.

The roots of formal verification based on theorem proving occur in the initial work of Floyd
[1968], who first introduced the concept, Hoare [1969], and Dijkstra [1976]. Verification is
based on demonstrating that given the truth of a predicate before a program node, when the node
is executed, then the post-condition predicate would be true. Hoare extended Floyd’s model by
placing it within the formal context of predicate logic. He based this approach on a series of
axioms describing the behavior of each language construct and proving, using mathematical
logic, that the program has the desired pre- and post-conditions. Dijkstra developed a model
similar to Hoare’s axiomatic model, called predicate transforms, which computes the weakest
preconditions and then demonstrates that they imply the given precondition of the specification.
These approaches constitute the foundation of axiomatic approaches.

The use of data types, object-orientation, and modularization has led to another model called
algebraic specifications. Specification and verification based on algebraic methods focus on the
axioms defining the interactions of operators of the signature with one another. Additional works
based on the concept of an Abstract Data Type can be found in Alphard [Shaw 1981], Modula-2
[Ernst et al. 1982], Ada/ANNA [Luckham et al. 1987], and Larch/Ada [Guaspari et al. 1990].
Along with composition rules and a context-induction prover that can demonstrate the
relationship between component specifications at different levels of abstraction, a pure algebraic
approach to the specification of reusable components is shown to be useful in retrieving and
identifying appropriate implementations for reuse [Cramer, Doberkat, and Goedicke 1994].
Functional correctness and verification based on operational semantics have also received
attention from the formal methods community. In functional correctness a program is considered
as a function from some input domain to some output domain. Assuming that it is also possible
to represent the specification as a function, verification process has to show that they are
equivalent functions. The operational model is based on using some more abstract interpreter and
showing that the program and the abstracted program have equivalent properties. Vienna
Definition Language (VDL) and denotational semantics are two examples based on the concept
of operational semantics. Krone [1988] provides verification rules using the proof system of
RESOLVE [Hegazy 1989].

The object-based concurrent systems community reveals the development of a trend toward
providing useful perspectives for object system verification. Most of the approaches are based on
some form of process calculi (i.e., CCS calculus, pi calculus). Other approaches rely on trace
semantics and actor systems. The verification work involving specific OO languages such as
POOL [America, 1989] and FOOPS [Goguen 1986; Goguen & Meseguer 1986] are based on
Hoare-style proof techniques and algebraic techniques, respectively. Another study of object-
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oriented systems verification is that of Fiadeiro and Maribaum [1994], which uses temporal logic
to prove that the properties to be verified are logical consequences of the axioms of the
specification.

Formal methods in component certification focus on specification and verification of compo-
nents using formal languages and associated proof systems. In contrast, recent efforts have
attempted to create a model-based verification process founded on selective and pragmatic appli-
cation of formal methods, using simplified models that focus on error detection rather than
formalized proofs [Gluch & Weinstock 1998].

By deriving test suites and new analysis methods based on partial models that capture the
essence of the component under certification, model-based verification typifies a lightweight
approach to the usage of formal and semi-formal methods. The models evolve during the compo-
nent development, ultimately leading to the final software artifact. The method used for describ-
ing the models and for formalizing the evolutionary steps provides a basis for verifying the
transformational accuracy of the overall development process.

In model-based verification, a well-founded formalism of software engineering models is chosen
to capture the essential properties and behavior of the system under study. The formalism should
have a well-defined language that includes mathematical and logical concepts permitting
deduction and reasoning. The formal or semiformal models are then used to reason about the
behavior of the component at higher levels of abstraction and to provide a basis for test suite
generation.

2.3.1.2 Object-Oriented Model Implementation Testing

Many books and articles have been written on the topics of object-oriented analysis, design, and
software development in general. Based on several of these, the perception about object-oriented
testing can be classified as follows:

q Testing is not discussed [Martin and Odell 1992; Shlaer and Mellor 1992].

q There is no need for a new approach; testing is not affected by the object-oriented para-
digm [Booch 1991].

q Object-orientation makes testing easier due to the new principles and concepts, which
the paradigm introduces [Rumbaugh et al.1991; Wirfs-Brock et al.1990].

q Object-oriented concepts such as encapsulation, inheritance, and polymorphism make
object-oriented testing different and imply new ways of testing [Berard 1992].

q Object-oriented development strategies are significantly different than traditional strate-
gies; thus there is a need for new strategies for testing. Moreover, due to the
incremental and iterative nature of object-oriented development, unit and integration
strategies must be redefined and testing must be a continuous activity with particular
emphasis on regression testing [Booch 1994; Jacobson et al. 1992].

Three different approaches to object-oriented model implementation testing are observed. These
approaches are categorized by the degree and manner they incorporate other paradigms as shown
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in Figure 3. A detailed discussion of these methods can be found in Yilmaz and Balci [1997] and
Yilmaz [1998].

q The conventional approach: In this approach existing well-known techniques are used
in testing without any adaptation or extension for object-oriented paradigm. In
particular, these techniques are applicable at the method level testing. That is, the
methods of objects are actually functions and procedures that use imperative language
constructs. Thus, conventional techniques are applicable for method level testing.

q The adaptive approach: There is vast amount of research conducted in procedural soft-
ware testing. The useful techniques borrowed from earlier research can be used in a
new way by adapting or extending to include object-orientation.

q The specific approach: In this approach new techniques, which are based on object-ori-
ented formalisms, are used to develop verification and validation strategies.

Figure 3: A Preliminary Taxonomy of Object-Oriented V&V Techniques
[Yilmaz and Balci 1997]

The differences between object-oriented and procedural software are discussed in Binder [1994].
Another of the first works that considers an object as the unit of testing and that proposes
adaptations of conventional techniques is Fiedler [1989].
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Perry and Kaiser [1990] discuss the theoretical view of object-oriented testing by describing the
applicability of Elaine Weyuker’s test adequacy criteria. Although the criteria were originally
designed for procedural software, they are useful enough to determine an adequate level of
testing for object-oriented software. The authors list each of the criteria and discuss the
applicability to the object-oriented paradigm.

Another interesting approach to testing is the adaptation of aliasing analysis techniques to
uncover errors. D’Souza and LeBlanc [1994] examine the use of pointer aliasing as a testing
technique. They summarize and evaluate the existing techniques and then show that using
pointer aliasing information can be as powerful in its ability to detect errors as other techniques.
The basic idea involves traversing the run-time structure obtained by the test case execution,
which is stored in a table of pathnames. Each entry in the table is composed of a pathname, an
object identifier, and the dynamic type of the object associated with that pathname. Then the
table is sorted with object identifiers. Finally, the table is scanned for duplicate object identifiers,
which due to sorting appear adjacent to each other. The duplicates indicate that the
corresponding pathnames alias the same object, which can be an anomaly.

One of the well known testing techniques in the context of procedural paradigm is data flow
testing. Although conventional data flow testing has been successfully applied to testing of pro-
grams developed using the procedural paradigm, it is not powerful enough to be used for object-
oriented paradigm [Parrish et al. 1993]. However, there are new adapted data flow techniques
that are appropriate for the object-oriented paradigm. Parrish et al. [1993] argue against the use
of only specification-based techniques. They propose a theory for the adaptation of conventional
flow graph-based strategies to testing object-oriented programs. They develop a formal
framework to model classes with flow graphs. Then analogous definitions of node coverage,
branch coverage, path coverage, definition coverage, use coverage, and du-path coverage are
defined on the class flow graph. Each node in the graph refers to a method of the class. The
edges between nodes represent the feasible sequence of method invocations, which can be
derived from the model-based specification of the class.

Hierarchical data flow testing technique, which is an extension of the existing data flow
techniques, is proposed by Subramanian, Tsai, and Kirani [1994]. The authors decompose an
object-oriented program into three different hierarchies: classes, objects, and attributes. They
describe class flows, object flows, attribute flows and then define the interrelationships among
them. Definitions such as “defined,” “referenced,” and “killed,” which are used in traditional
data flow testing, are extended for class, object and attribute flows. The analysis is based on an
algorithm with two phases. In the first phase class flow, object flow, and attribute flow are
performed; in the second, any ambiguities raised during the class and object flow stages are
resolved. As do the authors of previous approaches, Subramanian, et al., show the usefulness of
the technique for method sequence anomalies. One of the most important contributions of this
approach is its shifting of focus from variables to objects and classes; thus anomalies at this level
of abstraction can also be revealed.

In Chen and Low [1995] an extension of traditional data flow analysis is proposed. The
technique promoted by the authors uses the memory location of variables and class members
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rather than the improper sequence of actions on a variable. This procedure allows for the
detection of anomalies based on pointer variables and class operators.

Another technique for adapting data flow testing to object-oriented paradigm is discussed in
Harrold and Rothermel [1994]. They argue that most of the existing approaches are based on
specification-based testing techniques and that there is a necessity for augmenting these
approaches with code-based or white box techniques. Their technique defines three levels
involved in performing data flow class testing: (1) Intra-method testing, which performs data
flow testing for individual modules; (2) Inter-method testing, which tests the interaction of
methods inside a class; and (3) Intra-class testing, which tests the sequence of calls that can be
initiated by the user of the class..

Most of the approaches suggested for object-oriented testing do not mention the domain structure
and rules for which the model is developed. However, the structure of the domain and the
knowledge structure represented by the relationships among objects also require verification. For
instance, Addy [1997] discusses the importance of verification and validation in the domain
engineering phase of reuse-based software engineering. Kandelin and O’Leary [1995] extend
their previous research on rule-based system verification to develop verification approaches for
object-oriented AI models. Their approach uses meta-knowledge from the domain to examine
the completeness, consistency, correctness, and redundancy of the object model.

By identifying faults specific to the object-oriented paradigm, one can develop testing strategies
either by adapting conventional techniques or by developing pure object-oriented approaches.
Hayes [1994] concentrates on the necessity of developing fault taxonomy to guide testing. She
examines several fault types and associated verification techniques that are mentioned in
Firesmith [1993] and Purchase and Winder [1991]. Hayes argues that in order to adapt con-
ventional techniques it is necessary to understand the specific components of an object-oriented
system.

Hayes [1994] identifies five significant components: (1) objects, (2) associated messages and
methods, (3) class hierarchies (inheritance, aggregation, association relationships), (4) external
interfaces, which are connections to databases, users, communication channels etc., and (5) tools
and utilities. Tools and utilities are regarded as highly usable components. The author argues that
these components require a certification procedure, since they will be reused in a variety of
systems without customization. The methodology developed by Wohlin and Runeson [1994]
provides a useful technique, based on usage modeling, for certifying components of a model.

Firesmith [1993] analyzes the problem of testing and recommends a hierarchical testing strategy
based on the existing techniques. He identifies both the differences between the object-oriented
and procedural paradigm and their implications for testing. Based on the levels of testing (i.e.,
object, class, subassembly, message, exception, scenario), taxonomy of errors and their priority
for testing are presented. Then he suggests a verification technique for each error type listed in
the taxonomy. The techniques proposed are conventional black-box testing, white-box testing
and inspections to detect these specific errors. However, Firesmith does not explain how to apply
the techniques to uncover errors.
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There are other approaches that focus on test case generation and testing using different views of
the system: object model, dynamic model, and functional model. Usually these techniques are
influenced by the Object Modeling Technique (OMT) discussed in [Rumbaugh et al. 1991] for
the design and modeling of object-oriented systems. Thus the test cases are prepared based on
three different models: (1) Object Model, (2) Functional Model, and (3) Dynamic Model.

Poston [1994] discusses a project in which automated testing tools are integrated with the OMT
life cycle. The object model identifies the classes, attributes and their relationships (i.e.,
inheritance, association, aggregation). Although the object model incorporates name, type, and
initial values of attributes, it does not include domain descriptions. The testers add textual
annotations to the object model to make it test-ready. The dynamic model introduces graphical
notations for the specification of events, states, transitions, and hierarchies of states. However,
creating a test-ready dynamic model is hard and time consuming. After creating test-ready
models, a test case generator must be used to develop cases based on such design techniques
such as boundary value analysis, equivalence class testing, cause-effect graphing, and event-
based testing.

Kung, Hsia, Toyoshima, Chen, Kim, and Song [1995] developed a methodology that uses a test
model composed of three views of the system. Those views are represented by three types of
diagrams: 1) the object relation diagram (ORD), 2) the block branch diagram (BBD), and 3) the
object state diagram (OSD). Those diagrams are extracted from the source code using a reverse
engineering technique [Kung, Gao, Hsia, Toyoshima, and Chen, 1993]. The ORD diagram
represents aggregation, association, and inheritance relationships. The BBD deals with those
aspects of the system concerned with the control structure, transformation of values, and
functional dependencies. The OSD considers the dynamic model of the component [Kung,
Suchak, Gao, Hsia, Toyoshima, and Chen, 1994]. The usefulness of the test model is
summarized in Kung, et al. [1995] as follows:

q The tester and maintainer can understand the structure and relationships among the
components of an object-oriented program.

q The model allows the tester and maintainer to find strategies based on the test model to
reduce testing effort.

q The model facilitates the definition and analysis of test criteria..

Another approach advocated in Software Architects’ Synthesis model (SASY) by McGregor and
Korson [1994] is part of a comprehensive testing process utilizing the iterative OO development
approach. The authors represent SASY as a tool for structuring the development process and for
allowing the integration of the testing process during each iteration stage. Three main categories
of testing are identified: testing the development process, testing analysis and design models, and
testing implementation. McGregor and Korson focus on and suggest strategies for the last two
categories, namely, testing the implementation and models developed during the analysis and
design phases. The system model testing process is based on the completeness, consistency, and
correctness criteria. Use-cases are identified to develop interaction models, which are checked
for errors, ambiguities and omissions. Class-Responsibility-Collaboration (CRC) cards are
prepared for modeling individual classes during the specification phase. Then several checks are
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performed on these CRC cards to demonstrate their correctness and consistency with respect to
the object model.

The testing proceeds by using the models of OMT; that is, object model, dynamic model, and
functional model. During this phase not only the accuracy of the transformation from the
analysis model to design model must be verified but also the consistency of these different views
must be considered. For the system model testing process the authors propose guidelines for
testing the three different views of the system: object model, functional model, and dynamic
model.

The testing process usually involves the generation of cases which have input and expected
output pairs, such that the program processes the input and then compares the actual output to the
expected output (i.e., oracle) in order to determine whether the test case is successful or not.
Object-orientation represents a significant departure from conventional process-oriented models
in which there is a clear division between process and data. In the process-oriented model the
data is static, and complex processes reflected by large procedures represent the domain-
dependent semantics. By contrast, object-oriented modeling encapsulates both the data and its
domain-dependent semantics. Smith and Robson [1990] also argue this modeling difference in
order to demonstrate that the testing process defined above is not suitable for object-oriented
paradigm.

Algebraic-Specification-Based Testing approaches use algebraic specifications to object-oriented
testing. One of the earliest systems to address the question of testing data abstractions is DAISTS
(Data Abstraction Implementation Specification and Test System) [Gannon et al. 1981]. In
DAISTS the axioms of an algebraic specification are used as an oracle for the testing imple-
mentations of the Abstract Data Type (ADT). A test case consists of a set of arguments for the
left-hand side of the axiom. The test case is given as input to the left-hand side and right-hand
side of an axiom and then the results are checked by a user-supplied equality (EQN) function.

Doong and Frankl [1994] describe an approach called A Set of Tools for Object-Oriented
Testing (ASTOOT) that is based on the algebraic specification of ADTs. ASTOOT consists of
three components: driver generator, compiler, and simplifier. Under this system, the user utilizes
an interactive test generation tool (based on the compiler and simplifier) to create a sequence of
operations from algebraic specifications. The simplifier then uses rewrite rules provided by the
compiler to produce two equivalent sequences of operations that form a test case. Then the driver
generator executes the test cases.

A more recent approach proposed by Hughes and Stotts [1996], called DAISTISH, involves a
perl script which uses the formal specification of an ADT; it combines this specification with the
actual code and then creates a test driver. DAISTISH is similar to DAISTS; however, DAISTISH
is more effective in creating test drivers for languages that use side effects to implement ADT.
This approach is also similar to ASTOOT; however, the authors concentrate on the semantic-
specific issues of correctly duplicating the objects, rather than on automating the test case
selection problem. The differences between these tools are summarized in Hughes and Stotts
[1996].
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Also worth mentioning are the retesting and class firewall concepts developed by Kung et al.
[1995]. These programs undergo continual changes. By the use of functional decomposition
principles, the procedural paradigm provides a well-defined tractable structure. Hence the effects
of a change can be traced easily. However, in the case of object-oriented software, the effects
must be propagated to all the objects with relationships to the object under change. The Object
Relation Diagram (ORD) and Block Branch Diagram (BBD) are used for identifying the regions
of the code in need of retesting. The details of constructing the class firewall, its use in retesting,
and an algorithm for creating an optimal test order for the firewall are described in Kung, Gao,
Hsia, Lin, and Toyoshima [1995].

Reuse is one of the key issues in object-oriented development. Classes, components, and highly
reusable model libraries can be reused for different problem domains without wasting the effort
for redeveloping the same functionality. However, since these components will be reused in a
variety of systems without customization, they require a certification procedure. The methodol-
ogy developed by Wohlin and Runeson [1994] provides a useful technique, based on usage mod-
eling, for certifying components of a system. The objective of their method is to obtain reliability
measure for the components. During development for reuse, they suggest that components can be
certified with usage testing by developing usage profiles and then applying a certification model
that provides the level of confidence in them. They generate test cases by using a hierarchical
usage model by a state hierarchy model which uses Markov chains to model the state transitions.
They attach probabilities to usage and behavior transitions and then use these measures to
develop test sequences. The test sequences facilitate the collection of failure data and provide a
basis for the certification measure.

Harrold, McGregor, and Fitzpatrick [1992] discuss an incremental approach for the testing of
class hierarchies. They suggest an order for testing the inheritance hierarchy that starts from the
top. That is, testing starts with the base classes and continues down the hierarchy. The testing
process progresses by testing features in isolation followed by testing the interactions among
features. The authors’ algorithm uses test histories from the parent classes, which are
incrementally updated with information about the derived class’s differences from the parent
class. Each new test history allows the tester to differentiate the reusable test cases from the
parent class, along with any attributes for which new test cases must be generated. The authors’
approach supports three levels of attribute visibility: hidden, accessible to derived classes, and
accessible to all classes. They model the inheritance concept in terms of a class and a modifier,
resulting in a derived class.

Chung and Lee [1992] offer another study related to inheritance. The authors show that when
repeated inheritance occurs errors may arise as a result of name-confliction. The authors build a
directed graph of the inheritance structure where nodes denote the classes and edges denote the
inheritance. The root classes are traversed using breadth-first traversal, and then parent classes
are added to the ancestor sets of the child classes. The ancestor sets are examined to find the
repeated inheritance structures, which are then classified hierarchically based on their Euler
region numbers (r). Then these hierarchies are used in testing as follows: URI(1): every class in a
repeated inheritance must be tested at least once; URI(2): every repeated inheritance with r = 2
must be exercised; and URI(3): every closed region with r = 3 must be exercised. The authors
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propose that after such hierarchies are discovered, McCabe’s cyclomatic testing strategy should
then be applied to them.

The complexity of the object-oriented paradigm arises from the dynamic and diverse patterns of
interactions and collaborations among the objects. Testing individual methods and classes is not
enough; integration of class methods (i.e., intra class integration testing) and of methods of
different classes via association relationships (i.e., inter-class integration testing) is also
necessary. Unlike that of procedural and functional models, object-oriented models do not
possess an easily tractable system decomposition structure. Thus, top-down and bottom-up
integration strategies are not very useful. Inheritance and aggregation relationships and dynamic
binding thus pose challenging integration-level problems for the object-oriented paradigm.
Jorgensen and Erickson [1994] discuss this problem of structure and behavior in the case of
object-oriented software. They argue that the event-driven nature of object-oriented software
forces a declarative spirit on testing. The two constructs proposed for the integration level of test-
ing are as follows:

q Method/Message Path (MM-Path): a sequence of member function invocations which
starts with a method and ends when a method which does not issue any messages is
reached.

q Atomic System Function (ASF): an input event followed by a MM-Path, which ends
with an output port event.

These constructs provide a framework for integration testing. However, as the systems become
larger and more complex it becomes necessary to formally specify and capture the object
interactions through MM-Paths.

McGregor and Korson [1994] also provide an integration approach in their testing process
model. They identify two levels of interactions: those among the methods of a class and those
among the methods of different classes due to associational relationships. They suggest
investigating a pair of methods that directly or indirectly affect each other to produce incorrect
results. The strategy proceeds by constructing test cases that identify attributes modified or
accessed by two or more methods. Typically, each pair of such methods should be executed.
However, in the cases of polymorphism and dynamic binding, the definite inter-class relations
cannot be identified. The authors discuss applying orthogonal array-based techniques to utilize
possible interactions and create corresponding test cases. However, as the order of interactions
increases, the management of the technique becomes difficult.

Graham, Drakeford, and Turner [1993] suggest using black-box and white-box testing for
individual methods. They recommend an incremental strategy similar to the approach discussed
in Harrold, et al. [1992] for reducing the number of test cases that need to be re-run during the
testing of inheritance structure. For object integration testing, an object instantiation tree that
shows which objects can be instantiated from which others allows the tester to provide a top-
down testing order. This strategy creates a plan for the integration of program units.

One of the problems of object-oriented testing is the state dependent behavior of objects [Binder
1995]. A state-based approach is given in McGregor and Dyer [1993]. The test strategy relies on
the development of a state model of a class from OOA/D specification or by examination of the
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implementation of the class under test. Each class keeps an invariant and each test case checks
whether the current state complies with the invariant. They argue that due to polymorphism and
dynamic binding, possible number of client objects and polymorphic servers can be large and
they propose the use of orthogonal arrays to facilitate selection. Turner and Robson [1993] pro-
pose a new technique, called state-based testing, for the validation of object-oriented systems.
They mention that due to the interactions between the features and the state of the object, new
techniques are necessary. Their approach defines the state of an object as the combined values
from all of its data members. Once the states are identified, the methods and the input and output
states are examined. That is, the input states for which the method is applicable and the output
states which result by the application of the method are identified. Then test cases are generated
to create the initial condition (starting state for a method) along with the code which validates the
starting state. After this, the method is applied and the resulting state is compared to the expected
final state.

3. Verification and Validation Issues and Myths

The application of V&V throughout the life cycle of a simulation study is widely accepted in the
simulation modeling community. However, most simulation practitioners see the life cycle as a
sequential process, during which their favorite V&V tools and methodologies can be directly
applied. On the contrary, different development methodologies and paradigms need to be used
for different simulation development paradigms. Hence, proper selection of V&V methods is
essential to accurately measure the validity and quality of model artifacts developed under that
specific paradigm. For instance, model testing methods used for structured model design and
implementation may not properly apply to object-oriented or component-based development
artifacts. A different paradigm not only utilizes different artifacts organized in a unique structure,
but also builds on slightly different life cycles and development processes.

3.1 Verification and Validation Issues with Modern Development and Implementation
       Paradigms

The generic simulation development life cycle presented in section 2 includes the most common
phases of a process. There exist, however, methods such as agile processes that require
considerable change in the organizational deployment of these phases.

3.1.1 Traditional Development Models

Schulmeyer and MacKenzie [2000] and Rakitin [2001] review and evaluate several software
development life cycle (SDLC) models from the point of view of verification and validation
processes.

The classic waterfall model is based on a well-defined sequence of phases involving
requirements analysis and specification, design, implementation, and test and integration. The
modified waterfall assumes the same steps, but allows for iteration in any particular phase back
to a prior phase. Both of these models assume that a usable software product will not exist until
the end of the development process. The build (or “incremental build”) model allows for the
production of intermediate software products that incorporate increasing functionality. Once
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verified, these “builds” can serve as platforms for the integration and testing of new
functionality, and they can often provide users a partially functioning system that fulfills at least
some of their requirements. The waterfall and build models both assume that it is possible to
capture and specify system requirements when a development project begins. The spiral model
[Boehm 1988], however, recognizes that with complex systems it is often difficult to fully
specify requirements in early stages of the SDLC. This model allows for a continuous process of
refining requirements, validating them through the use of prototypes, assessing risk, and refining
plans - all leading to ultimate product development.

The waterfall, build, and spiral models usually result in the generation of artifacts, such as
requirements specifications, design documents, test plans, and test procedures that are available
at predefined milestones in the development process. Traditional V&V methods, including
requirements tracing, specification reviews, design reviews, code inspection, and test monitoring,
depend in part on the examination and evaluation of these artifacts [Lewis 1992].

The international standard ISO 12207 is somewhat unique in that it defines overall activities for
primary, supporting, and organizational life cycle processes (including V&V) without dictating
the use of a specific SDLC model. Thus there could be variability in the nature of the products
available for V&V. IEEE/EIA 12207.1 is more specific in that the standard provides guidance for
a series of “information items” that should be produced as a result of various processes,
activities, and tasks in the life cycle [IEEE/EIA 12207.1-1997]. Many of these items would
support V&V.

Additional development paradigms are discussed in Rakitin [2001]. Model-based development
techniques are particularly useful in designing and implementing client/server and Graphical
User interface based systems. (“Model” in this context refers to the use of a business process
model, or application domain model, in analyzing requirements and developing the system
design). Fourth generation life cycle models are hybrids that assume that large development
efforts can use different techniques, depending on which is most appropriate, for different parts
of the system. There is no guarantee that model-based development or fourth generation life
cycle models will result in the full set of artifacts that supports traditional V&V.

Table 2 shows several characteristics of various life cycle models. This simplified comparison is
based on factors that might present challenges for V&V. For example, in models that allow for
incremental requirements definition or iteration, verification is complicated by the need to
maintain a system for continually assessing requirements completeness and the impact of
changes. Similarly, final validation from a user’s point of view is more complex in situations
where intermediate products can be deployed in an operational environment.

Table 3 lists opportunities and risks - the strengths and weaknesses - of different life cycle
models under a variety of programmatic conditions. Depending on the nature and level of
uncertainties that are involved, some models may be better suited to a particular project than
others. In this context, V&V must also be flexible.
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Table 2. Life Cycle Model Comparisons

[Schulmeyer and MacKenzie 2000, p. 39]

Table 3. Life Cycle Model Opportunities and Risks

Legend - Models:
1-Waterfall; 2-Modified Waterfall; 3-Build; 4-ISO 12207; 5-Spiral; 6-Model-Based; 7-Fourth Generation

[Schulmeyer and MacKenzie 2000, p. 39]

3.1.2 New Development Models

Newer SDLC models include rapid application development (RAD), operational prototyping,
and agile methods. RAD is most effective in situations where requirements are constrained and
well defined and where the project can be completed in a few months [Pressman 2001].
Operational prototyping utilizes rapid prototyping techniques to evolve both the product
specification and design in parallel [DeGrace and Stahl 1991]; the difference here is that the
prototype is intended to evolve into a finished operational product, whereas most prototypes are
meant to be “throwaways.” Therefore engineering discipline must be maintained and operational
standards must be observed.

The agile methods model, as exemplified by Extreme Programming (XP) [Beck 2000], extends
on these evolutionary development processes. XP is characterized as being most effective on
small to medium sized projects where requirements are vague or ambiguous. Development staff

Model
All Rqmts 

Defined 
First?

Multiple 
Builds?

Use 
Interim 

Products?
Remarks

Waterfall Yes No No Recursion / Iteration, As Needed
Modified Waterfall Yes No No
Build No Yes Yes Build N = Build (N-1) + More Capabilities.

Recursion / Iteration, As Needed

ISO 12207 No No No Recursion / Iteration, As Needed
Spiral No Yes Yes Build N = Build (N-1) + More Capabilities.

Recursion / Iteration, As Needed

Model-Based No No Yes Recursion / Iteration, As Needed
Fourth Generation No Yes Yes Build N = Build (N-1) + More Capabilities.

Recursion / Iteration, As Needed

Factors Opportunity Risk
1.  Requirements not well defined. 3,5 1,2,4,6,7
2.  System too large to do once. 3,5,7 1,2,6

3.  Full capability needed at once. 1,2,6,7 3,5
4.  Partial capability needed early.
...eearly

3,5 1,2,6,7
5.  Phase out of old system to be gradual. 3,5 1,2
6.  Rapid changes in requirements anticipated. ALL
7.  Rapid changes in technology anticipated. 6,7 1,2,3,4,5
8.  Long run staff / funds commitment doubtful. 3,5,7 1,2
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is often divided into teams of two programmers each, and code is rapidly written and frequently
compiled, executed, and integrated as part of a continuous build and test process. The objective
is to “put a simple system into production quickly [and] release new versions on a very short
(two-week) cycle” [Paulk 2001, p. 20].

Recent discussion about the theory and practice of XP, and agile methods in general, revolves
around several perceived limitations. First, the issue of scalability has many arguing that these
methods cannot be effectively applied to projects requiring large development teams. (Although
Aoyama [1998] describes a case where a well disciplined and well managed Agile Software
Process was successfully used on a project that over time involved approximately 500
developers). Second, there are some concerns about the amount of freedom XP gives developers
to change architectural design during the course of the project [Paulk 2001]. And third, in the
case of mission critical applications there is a question as to whether XP-like methods encourage
the use of the managerial, planning, and systems engineering processes needed to produce high
reliability software. Boehm [2002] summarizes many of these arguments and proposes that
organizations should be flexible and familiar with both agile and more traditional SDLC models
and be prepared using risk assessment to adopt the suitable approach for a given situation.

New models present challenges to traditional V&V. A deliberate attempt to reduce the amount of
documentation to a bare minimum will likely increase programmer productivity [Maurer and
Martel 2002], but it will also reduce the number and quality of documents that support typical
V&V tasks. Furthermore, these models are schedule driven and require a tight integration of
design, code, and system test activities - often conducted by the same individual. Thus, in an
environment where independent verification (as discussed in section 3.2) might be most
beneficial for product quality, it becomes more difficult to perform because of schedule
constraints and reduced access to the testing process.

3.2 The Role and Rationale of Independent Verification and Validation

From an organizational perspective, Arthur and Nance [2000] maintain that independent V&V is
necessary to establish technical, managerial, and financial independence. Technical
independence requires the credibility assessment and risk mitigation efforts to utilize personnel
who are not involved in the development of the system. It helps detect errors overlooked by
those too close to the solution. Managerial independence requires that the responsibility for the
V&V and credibility assessment effort be handled in an organization separate from the
development organization. Hence, the credibility assessment results, anomalies, and findings can
be submitted without any limitations and undesirable pressures from the development
organization. Financial independence requires that control of credibility assessment budget be
handed in an organization independent of the development organization. This independence
prevents situations where V&V effort can not complete its analysis within the release time
because funds have been diverted or adverse financial pressures or influences have been exerted.
The benefits of independent V&V are direct consequences of maintaining technical, managerial,
and financial independence [Arthur and Nance 2000; Lewis 1992]. Major benefits can be
characterized as follows:

q Benefit 1: Independent V&V promotes objectivity through unbiased technical viewpoint.
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q Benefit 2: Independent risk management promotes earlier detection of model and
software errors during the conceptualization and design phases As a result of earlier error
detection effort and cost reduction can be achieved in removing those errors.

q Benefit 3: Enhanced operational correctness and statistically significant reduced
variability in the development process.

q Benefit 4: Independent risk management team help get things right in the first place by
designing testability and reliability through its assurance role. It also makes sure that the
product is independently evaluated through its assessment role. Both of these roles are
played throughout the development life-cycle.

q Benefit 5: Developers focus on getting software to work. They may lack the knowledge
and training necessary to assess and improve the quality, safety, and reliability of
systems. Independent risk management closes the gap of risk management knowledge.

3.3 Myths about Simulation Model Verification and Validation

Applications of model validation methods are considered difficult, expensive, and time
consuming. Based on our experience and case studies in real-world examples, we challenge
existing common myths about simulation model validation.

Myth 1: Model V&V can guarantee correctness, absolute validity, and credibility: The fact
is that complete model testing is not possible due to large state space of involved model designs
and software implementations. Model testing is known to indicate the presence of errors as
opposed to their absence. Formal methods can be used during the early phases of the lifecycle to
prove certain properties of models. However, complete functional formal verification of model
implementation is not possible. This is partly due to the model development technologies and
practices that make modular sound reasoning and inference about implementations impossible.
Furthermore, functional correctness is a necessary but insufficient condition for validity and
credibility. The incorrect formulation and definition of problems can also lead to acceptance of
invalid models that are exhaustively tested. This is similar to the situation that leads to the
necessity of validating the knowledge base in Knowledge Based Systems [Schulmeyer and
MacKenzie 2000, pp. 262-285]. Inappropriate usage of V&V methods along with the lack of
techniques for specific paradigms aggravates the problem. In addition, model validation has its
roots in theory confirmation. The philosophy of simulation validation is, in general, in
conformance with the pragmatist philosophy of science and builds on systems thinking
perspective. In this view, V&V is a confidence building activity and involves subjective criteria
regarding the usefulness of a model for its intended purpose over its intended domain of
applicability. Since, the simulation model is built with respect to the study objectives for the
identified domain, its credibility needs to be judged against the conditions for which it is tested.

Myth 2: Model V&V deals only with substantiating the accuracy of simulation models: The
fact is that the credibility and validity of today’s complex simulation systems require certain
qualities to exist along with accuracy. The acceptability and usability of simulations are effected
by quality characteristics such as maintainability, conformity, performance, and portability. In
addition, the controllability and observability of models increase their testability. A testable
model is likely to reveal hidden errors; hence, the arguments on its validity is more convincing.
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Therefore, model V&V deals with quality as well as accuracy of models, since they are both
necessary for building confidence in the model.

Myth 3: Models can be considered valid and credible as long their behavior is an objective
reflection of the system entity: The fact is that a model needs to be considered as a
representation of the real system that embodies a theory about how the system works from the
perspective of the purpose of the study. Hence, substantiating the operational validity based on
model’s black-box behavior under certain experimental conditions is necessary but insufficient
for its acceptability. That is, achieved accuracy in emulating the input/output behavior may be
due to incorrect reasons embodied in the causal relational structure among the simulation
elements and processes. Therefore, establishing the fact that the model behavior is achieved the
way it is intended is also necessary for many simulation application domains (i.e., system
dynamics).

Myth 4: Model V&V requires highly trained statisticians and mathematicians: The fact is
that even though there exist V&V methodologies that incorporate techniques such as formal
verification, model checking, and statistical inference that require mathematical logic and
statistics knowledge, V&V is extremely procedure driven and methodological activity.  The
necessary statistical and mathematical knowledge is not often used in the derivation of
mathematical properties of models, but rather application of routine procedures on the collected
data. Furthermore, for advanced formal techniques, there exist tool support to guide and provide
heuristics to complete even the formal and advanced mathematical validation activities. Besides,
CASE and testing tools almost always support software testing and analysis phases. The widely
used techniques such as reviews, walkthroughs, and inspections are informal methods that
require critical thinking and analysis capabilities as opposed to using statistical inference or
mathematical logic.

Myth 5: Model V&V always increases the cost of the development: The fact is that with
continuous application of V&V (especially IV&V) throughout the development life cycle, the
costs of a model development effort containing no IV&V component is comparable (most of the
time higher) to the same development effort with an IV&V component [Arthur and Nance 2000].
As reported by Lewis [1992], the cost of IV&V is offset by the reduction in reported problems
(i.e., poor requirements, lack of plans, failure to detect earlier at the requirements and
specification development phases).

Myth 6: Model V&V always delays the development cost: The fact is that the strongest
indicators of project failures and schedule slips are poor requirements, failure to communicate
with the customer, and poor allocation of resources [Arthur and Nance 2000], which are
mitigated by IV&V activities Arthur and Nance argue, with the support of a  reasonably recent
Standish survey [Standish 1995], that 11% of surveyed projects exceeded their time estimates by
200%, 46% of projects exceeded by 100%, and 66% exceeded by 50%

Myth 7:  A simulation model is built and validated with respect to certain study objectives,
therefore, it can not credibly be reused in a new context: The fact is that  complete matching
of model objectives and model implementation interfaces is not necessary for the reuse of
models in a new context. Technically, models can be syntactically adapted or wrapped to behave
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in conformance with its new context. From the objectives point of view and purpose of the study,
as long as the model is practically useful and relatively meaningful when adapted for conformity
to the new context, a trade-off can be made between a reuse and development from scratch
decision. After all, since simulation model validity means “adequacy with respect to a purpose”,
validation needs to have qualitative and subjective evaluation of components. Note, however,
research for guidelines and methods are necessary to measure the degree of relevance of a model
to new context’s requirements and objectives. It is widely accepted that, driven by fiscal
constraints, increasing pressure exists to explore cost effective methods for simulation model
development activities. The shorter timescales required as well as the need to rapidly incorporate
simulation elements demanded by model-integrated applications bring new challenges. In
particular, cost reduction in model development using parameterized designs with compositional
modeling is one of the core problems that needs to be addressed.

Myth 8: Independent model V&V (IV&V) is not necessary since compliance to process
models such as CMM guarantees high quality and credible models: The fact is that
compliance with process models does not necessarily result in high-quality products. The process
models standardize and streamline the development effort and enable repeatable and measurable
product development. Throughout 1990s, process models and improvement strategies have been
advocated as a silver bullet to help achieve high quality software intensive systems and
simulations. The emphasis on conformance to process standards without considering
specification conformance is likely to result in more failures. Besides, the customers are not
paying for the process, but rather for the final product.  Having a well-defined process in place is
definitely a good idea, and it is also essential for managing large complex software intensive
systems. However, unless product quality is sought throughout the process, process quality itself
can not deliver the high quality and credible simulations.

4.  Emerging Prospects for Model V&V Research

A close look at the model validation history indicates that quality and validity of models have
been interpreted in different ways based on the mission context and the types of problems being
solved. Evolution of modeling paradigms, methodologies, tools, and technologies had
considerable impact on the way V&V is perceived. These advances are partly influenced by the
changing nature of the problems attacked as well as the emergent paradigms (i.e., object-
oriented, agent-based) used by the modeling community. In this section we discuss the emerging
prospects for future V&V research based on the prominent new paradigms and methodologies.

4.1 Formal Methods for Model V&V

Formal methods, as discussed in prior sections, are mathematically based techniques that provide
frameworks within which model developers can specify, reason, and verify about designs and
simulations in a systematic manner.  Formal methods in software are, to a certain extent,
applicable to simulation software as well as model designs. Such methods can be used to reveal
ambiguities, incompleteness, inconsistencies in system theories and models that simulate them.
Furthermore, formal methods with sound inference and reasoning mechanisms help model
developers prove certain properties about their models. Since formal methods enable systematic
demonstration of the correspondence of the model with respect to its specification, the
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conceptual model validation process can benefit from such sound inference and reasoning
methods. That is, the deductive apparatus of formal methods can help model developers to
establish the correspondence of their conceptual models to system abstractions, theories, and
properties depicted in a formal specification language. Developing specific properties of interest
for certain application domains and introducing approaches that satisfy model conceptualizations
such as event graphs and DEVS formalisms are promising areas of research that will introduce
formal methods to early phases of the simulation lifecycle.

4.2 Model V&V with Reuse: Connections with Interoperability

Simulation development with reuse can not only significantly reduce effort and cost but also
improve the quality of simulations. Reusing existing simulation components requires reasoning
about their fitness and suitability in the new context. Syntactic interface compatibility is a
necessary but insufficient condition for reuse and composable simulations. Semantic
compatibility of simulation components is essential to alleviate differences in fidelity levels,
representation granularity, time management, and data compatibility. Establishing semantic
compatibility among diverse components under a new federation (i.e., High Level Architecture)
requires meaningful and timely exchange of information. Furthermore, original objectives of a
reused simulation component may not be in conformance with the needs and goals of a new
simulation. Verifying and testing components to assess their fitness into a new formally specified
context requires methods that detect mismatches among specification. Since complete matching
is not a practical solution, fuzzy and approximate matching with formal decision methods are
more likely to be useful. Building models for reuse introduces new issues such as general
applicability and conformance to published specifications. That is, each model needs to publish
its properties as well as its functional and non-functional behavior. The verification of a model
component has to demonstrate that the component is correctly developed with respect to the
published specification such that as long as the context uses the component in conformance with
its specification, the reused component is guaranteed to deliver published behavior. Yilmaz and
Edwards [2002] illustrate this viewpoint with regard to the specification and verification of
collaborative behavior features of component-based systems. Another pertinent issue regarding
model V&V with reuse is the inclusion of built-in-test and interface violation detector
mechanisms [Edwards 2002] with model components to facilitate ease of reuse and increase in
confidence. This is due to the fact that developers need to test and verify reused models in their
new context to systematically determine if they satisfy the constraints imposed by the context.

4.3 Conceptual Model Consistency

Rapid, distributed, and collaborative model development along with perpetual and complex
change characterizes today’s development of software-intensive mission critical simulation
systems. The costs associated with detecting and fixing errors in such software-intensive
simulations can amount to a significant percentage of overall development cost. The distributed
and collaborative engineering of simulation model conceptualizations and specifications
introduces consistency and coherence problems. Furthermore, fixing errors late in the life cycle
is more costly due to the overall impact of code level changes. Hence, error reduction earlier in
the simulation modeling lifecycle is needed. Model-based verification methodologies that could
detect inconsistencies and behavioral defects at the conceptualization and model specification
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stage is likely to alleviate these problems. The selective application of formal methodologies and
the focus on error identification and correction distinguishes model-based verification approach
from more traditional formal methods approaches with deductive apparatus. In particular, formal
consistency analysis and management of UML structural analysis and design models and
analytical model checking of UML behavioral design models based on their finite state
reachability graphs are open issues.

4.4 Emergent Issues in Agent-Based Simulation Model V&V

Agent-based modeling and multi-agent simulations are promising emerging areas in simulation
modeling. They represent an exciting new synthesis of AI, software engineering, and simulation
modeling to simulate complex adaptive systems that constitute autonomous, intelligent, reactive,
proactive, and goal-directed entities. Agent theory introduces new abstraction, organization, and
decomposition mechanisms for system simulation. The emphasis on collaboration, coordination,
task distribution, and adaptive behavior requires agent-based simulations to deploy specific
algorithms and methods. Existing modeling paradigms do not scale and accurately characterize
more complex, real-world systems (i.e., biological, organizational) that continuously change,
adapt, and evolve to fit into their context. New paradigms arising from complex adaptive systems
as well as artificial life theories are attracting the attention of model developers. V&V of
distributed multi-agents systems that incorporate complexity through interactions, patterns of
adaptive organizations, and processes requires new means to analyze and assess the accuracy of
their emergent, mostly unpredictable behavior. The pervading notions of  causality, mechanism,
non-linear dynamics,  process, and flows need to be addressed by new V&V methodologies.

4.5 Performance Testing of Distributed Active Systems with Publish / Subscribe
Architectures: HLA Performance Benchmarking

As agencies shift and integrate their essential simulation services onto distributed software
intensive message-oriented middleware platforms (C4I), failures as well as performance
bottlenecks would result in unacceptable and ineffectual simulations. Configurable performance
benchmarking environments would be valuable for large-scale Publish/Subscribe (P/S)-based
distributed simulation infrastructures such as High Level Architecture (HLA) mandated by
Defense Modeling and Simulation Office. To the best of our knowledge, no such architecturally
proper HLA performance benchmarking tools yet exists. Hence, a new test methodology and
supporting environment for emergent distributed active systems that deploy P/S architectures are
needed.  In such simulation architectures information must be disseminated from many federate
and C4I node publishers to large number of subscribers, while subscribers must have the ability
to select and extract the data of interest out of a dynamically changing information. Knowing
how well a distributed messaging infrastructure performs under heavy load with a large number
of concurrently connected federates is a key factor in planning a deployment strategy. Numerous
companies and academic centers are developing and transitioning commercial P/S type of
message-oriented middleware. However, the science of testing messaging middleware and
frameworks is an uncharted territory as there are no industry-accepted benchmarks. To meet this
need, P/S benchmarking environments are needed to (1) set up and design formal P/S
performance experiments that would facilitate semi-automatic generation of scenarios, (2) derive
benchmark configuration specifications from the scenarios, (3) configure, execute, and
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distributively monitor the benchmark execution, and (4) perform statistical/visual post-analysis
consistent with the experiments designed by the verification engineer.

4.6 Safe Model Test Boundaries: Managing the Evolution of Models

It is a well-known fact that almost two-thirds of software-intensive simulation development time
is devoted to maintenance and evolution. In particular, the current trend towards using open
standards supported by COTS in developing open distributed federations of simulation systems
increases the likelihood of constant system modernization and evolution. The usage of COTS
components and the need for modernization (i.e., to achieve information superiority) and C4I
integration introduce upgrade problems. That is, as new or upgraded models (.e., sensor models)
are inserted into the baselines, model developers spend enormous amount of time to instill back
confidence in the legacy systems and models to assure backward compatibility.  Although this
problem is not a new challenge, it is becoming a significant issue, as the new generation of
systems is more complex, distributed, and COTS-driven. Software engineering and simulation
directorates in military as well as commercial organizations invest increasingly large amount of
effort to keep pace with the impacts of new technology insertion or adaptive modifications.
There is an urgent need for tools that would at least help manage instilling back confidence on
the legacy models with regard to their compatibility to the upgraded or modified baseline
systems. This would enable system engineers to focus on the essential high-risk and error-prone
areas of the models and its interfaces, while the identified unimpacted components are recertified
automatically without human intervention using existing test suites and drivers.

4.7 Synthetic Natural Environment V&V

Driven by fiscal constraints, increasing pressure exists to employ realistic training simulations
for driving exploration into new, more effective methods for modeling activities. The synthetic
natural environment (SNE) models, upon which operational system models impact, constitute the
environmental ground truth. The  environmental ground truth contains both the data (i.e., terrain,
atmosphere, ocean, space) and the models that represent the internal dynamics that effect and
impact the environmental data. Recent DMSO initiatives such as Integrated Natural
Environment Authoritative Representation Process require existing environmental data and
models to be retrieved based on user-formulated constraints. The retrieved data that satisfies the
user requirements need to be composed to derive complete synthetic environments.  The shorter
timescales required as well as the need to rapidly incorporate such SNE components demanded
by training applications bring similar challenges. In particular, cost reduction in SNE
development using parameterized scenario generation with compositional modeling is the core
problem that needs to be addressed. Component-based development of complex SNE
components requires domain-specific repository organization with intelligent component
retrieval mechanisms along with reasoning methods for conflict identification before component
assembly [Yilmaz et al. 2002]. Furthermore, merging disparate SNE components needs
sophisticated data schema V&V, interoperability analysis, diagnosis, and merge tools. The major
programs that will be supported by this research are: (1) advance concept development and
defense planning, (2) R&D, acquisition, and military doctrine development, and (3) training,
exercise, and military operations domains. Other application domains that would enjoy the
advancements in rapid generation and certification of synthetic environments are the GIS and
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C4I fields. These fields require the use of 2D and 3D data and models for visualization, analysis,
and evaluation in support of decision-making tasks.

5. Recommendations

Model V&V is a confidence building activity during which the acceptability and credibility of a
simulation model is established. The increasingly complex software-intensive nature of
simulation models as well as their integration with real and virtual application domains require
us to focus on quality in addition to accuracy. Product quality attributes such as maintainability,
performance, and testability need to become essential indirect measures for acceptability and
credibility of simulations. Furthermore, the increasing complexity is requiring managers to
incorporate explicit risk management and SQA activities interleaved with the development
process. Incorporating risk management into the simulation model development life cycle will
also provide a compelling business case for comprehensive, systematic V&V. This is due to the
fact that the avoided costs associated with business/mission risks as a result of  V&V will be
evident.  The different opinions on management of V&V is also an important concern.
Independent V&V is urged for successful simulation and software development studies [Lewis
1992]. For instance, as Arthur and Nance [2000] argue, lack of independent V&V in simulation
modeling community is a recipe for failure. The need for achieving technical, financial, and
managerial independence to establish the credibility of simulation models is becoming more and
more apparent.

Building models from available COTS components is strongly advocated by academicians. The
practitioners and managers support and are consent with the claims that compositional
component-based modeling can indeed positively effect the development cost and effort as well
as quality of models. However, the current state of the practice with regard to the modeling with
and for reuse is still not mature. More research is needed to establish the principles of predictable
compositional modeling.

The competency of V&V staff is another issue of concern that requires attention. Continuous
rapid change in simulation development paradigms and methodologies makes some widely
adopted V&V methods obsolete. A career path for V&V practitioners that constitutes continuous
training and learning is essential.

6. Conclusions

This paper has presented an overview of verification and validation concepts and trends in the
areas of modeling and simulation in particular and software development in general. Rapid
advances in the use of sophisticated models as well as in the tools, techniques, and methods used
to produce them produce both challenges and opportunities. These will create a continuing need
for new innovative V&V technologies and strategies in the future.
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